Fast Vessel Detection in Gaofen-3 SAR Images with Ultrafine Strip-Map Mode
نویسندگان
چکیده
This study aims to detect vessels with lengths ranging from about 70 to 300 m, in Gaofen-3 (GF-3) SAR images with ultrafine strip-map (UFS) mode as fast as possible. Based on the analysis of the characteristics of vessels in GF-3 SAR imagery, an effective vessel detection method is proposed in this paper. Firstly, the iterative constant false alarm rate (CFAR) method is employed to detect the potential ship pixels. Secondly, the mean-shift operation is applied on each potential ship pixel to identify the candidate target region. During the mean-shift process, we maintain a selection matrix recording which pixels can be taken, and these pixels are called as the valid points of the candidate target. The l 1 norm regression is used to extract the principal axis and detect the valid points. Finally, two kinds of false alarms, the bright line and the azimuth ambiguity, are removed by comparing the valid area of the candidate target with a pre-defined value and computing the displacement between the true target and the corresponding replicas respectively. Experimental results on three GF-3 SAR images with UFS mode demonstrate the effectiveness and efficiency of the proposed method.
منابع مشابه
Multi-Mode GF-3 Satellite Image Geometric Accuracy Verification Using the RPC Model
The GaoFen-3 (GF-3) satellite is the first C-band multi-polarization synthetic aperture radar (SAR) imaging satellite with a resolution up to 1 m in China. It is also the only SAR satellite of the High-Resolution Earth Observation System designed for civilian use. There are 12 different imaging models to meet the needs of different industry users. However, to use SAR satellite images for relate...
متن کاملSliding Spotlight Mode Imaging with GF-3 Spaceborne SAR Sensor
Synthetic aperture radar (SAR) sliding spotlight work mode can achieve high resolutions and wide swath (HRWS) simultaneously by steering the radar antenna beam. This paper aims to obtain well focused images using sliding spotlight mode with the Chinese Gaofen-3 SAR sensor. We proposed an integrated imaging scheme with sliding spotlight echoes. In the imaging scheme, the two-step approach is app...
متن کاملShip Detection in Gaofen-3 SAR Images Based on Sea Clutter Distribution Analysis and Deep Convolutional Neural Network
Target detection is one of the important applications in the field of remote sensing. The Gaofen-3 (GF-3) Synthetic Aperture Radar (SAR) satellite launched by China is a powerful tool for maritime monitoring. This work aims at detecting ships in GF-3 SAR images using a new land masking strategy, the appropriate model for sea clutter and a neural network as the discrimination scheme. Firstly, th...
متن کاملGaofen-3 PolSAR Image Classification via XGBoost and Polarimetric Spatial Information
The launch of the Chinese Gaofen-3 (GF-3) satellite will provide enough synthetic aperture radar (SAR) images with different imaging modes for land cover classification and other potential usages in the next few years. This paper aims to propose an efficient and practical classification framework for a GF-3 polarimetric SAR (PolSAR) image. The proposed classification framework consists of four ...
متن کاملDevelopment of Wind Speed Retrieval from Cross-Polarization Chinese Gaofen-3 Synthetic Aperture Radar in Typhoons
The purpose of our work is to determine the feasibility and effectiveness of retrieving sea surface wind speeds from C-band cross-polarization (herein vertical-horizontal, VH) Chinese Gaofen-3 (GF-3) SAR images in typhoons. In this study, we have collected three GF-3 SAR images acquired in Global Observation (GLO) and Wide ScanSAR (WSC) mode during the summer of 2017 from the China Sea, which i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 17 شماره
صفحات -
تاریخ انتشار 2017